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ABSTRACT

We consider a viscoelastic fluid filling a bounded domain in R3 under

the influence of a small body force. The fluid is described by certain

differential constitutive equations. We use an iterative method to prove the

existence of steady flows.
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SIGNIFICANCE AND EXPLANATION

estions of existence and uniqueness of steady flows of viscoelastic

fluids have thus far not been understood, even for slow flows perturbing

rest. This paper provides an existence result for slow flows with no in- and I..

outflow boundaries. The fluid is assumed to be described by constitutive

equations of a differential nature. The method used to prove existence is

constructive and in fact very close to procedures used in numerical -....

calculations.
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EXISTENCE OF SLOW STEADY FLOWS OF VISCOELASTIC FLUIDS

WITH DIFFERENTIAL CONSTITUTIVE EQUATIONS

Michael Renardy

1. INTRODUCTION . _

Although existence theorems for low Reynolds number steady flows
IO.. ..

of Newtonian fluids are well known (see e.g. [S]), no such theorems have

been established for viscoelastic fluids. There are formal perturbation

expansions which are used for slow flows (see e.g. [10]), but the

justification of these expansions leads to difficult problems in singular

perturbation theory, which have not been solved. Niggemann [8] has

given a convergence proof for expansions of this nature in a one-dimensional

model problem, which has certain features in common with equations in

viscoelasticity.

In this paper, we prove the existence of slow steady flows of certain

viscoelastic fluids by using an iterative method. The basic idea is very

similar to existence proofs for initial value problems in hyperbolic partial

differential equations. We first show that all iterates are bounded and

small in a certain norm, and we then show that the iteration converges

in a weaker norm. The iteration we use is similar to procedures employed

in numerical calculations (for a review, see [1]), and the ideas used here

should therefore be useful in proving convergence of numerical schemes. *..::...

We shall also use our results to justify the formal perturbation methods

as asymptotic expansions, but we do not prove their convergence.
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Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant Nos. MCS-8210950 and MCS-8215064, and by the Centre for Mathematical
Analysis, Australian National University.

S..• \.°

* .. . . . . S. . . . .....- "

~ . S.o*oS° oS

.. .. .. . . ..-.-.*. .. , ........*.. .-.. .-. .-....%. . .. . . .. , . .. . , , , . .. . .. .. . ., , .. . . ,. , ... , :



1.. * 4  . a.

We study steady flows of a viscoelastic liquid in a bounded domain

a CR 3 . The fluid satisfied the no-slip condition on the wall and moves

under the influence of a given body force. (Problems arising in applications

usually have inflow boundaries, which require additional boundary conditions.

Such problems are more difficult than the one studied here). The equations

for steady flow are as follows

py'V)u - divl Vp-f = 0

in c R
(1.1) divu = 0 ,- 0.

u -0 on M0

Here u (ulU 2 ,U3 ) is the velocity vector, p the pressure and T

the extra stress. f is the given body force and P is the density.

Throughout the paper, Q is assumed to be a bounded domain with a

smooth (for simplicity, say Ce-) boundary.
p..',.+

The extra stress is related to the velocity field by a constitutive

equation. Here we deal with differential constitutive equations. For

simplicity, we adopt a particular constitutive law, which exemplifies

the typical structure. This model, the "rubberlike liquid" [31, [71,

is given by

N+ I" nog.* T •
ki

(1.2)

-'_VIk - (VTIk - Tk(V)T + )kk 2 kXkg
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whr uis tevelocity gradient :x VV) and
1 T

20- (V + (VIi) ). N is an arbitrary positive integer and n kare

positive constants (no0 may be zero).
d V. -.

The essential difficulty for the analysis arises from the terms

(u-V)Tk The particular form of the terms (VtO~jk and Ik(V31) T i

unimportant, and we could replace them by other nonlinear combinations

* of (Vii and k.Our analysis can thus be extended to fluids with

other differential constitutive equations. such as those of Oldroyd [9),
-* -

Leonov [6J and Giesekus- [2). ..

67.



2. THE CASE OF THE UIPPER CONVECTED MAXWELL FLUID

In this case, we set no 0 and N I i.e. the constitutive

equation takes the form:

(2.1) (YG.V)I - RD!) - (vu) T + X 2rgAR

By applying the divergence operator. we obtain -

2(2.2) (y-V)divl- (Vu)div + divT= :au + u.

Here we use the notation T: a23 T .Next, we substitute
k a~

div T *p(u-V)u + Vp -ffrom (1.1), and obtain

(2.3) V[(u.V)p + )XPJ - - +LV-) Ip (!.V)f

+ (Vux)f- Xf T :2 aU +nMU - (V LIVI

+. P(RY) (iV)Y -A XPjV)!

In the following, we regard (2.3), with the condition div u- 0

and the no-slip condition, as a perturbation of the Stokes problem. This

equation contains a "'modified pressure" q - (u*V)p +Ap .Solutions are

found by the following iteration scheme.

0 0 0
(2.4) u O p aq0 no9 1 -2~

(2.S) 2 3u n+ ,,n4~ ~uV(.Vu

a [Vn+ (Vun)TVpn_ (Un V)f (Vun) A f-

n+ n n n+

div u 1 SO u~ =0 on all ff qn~ _0 ~ .

%% %% %



nil nil n+1 nil [
(2.6) (u .V)p APp q

nl.V)Tnl- (Vu+' 1  ,n+l : T

( . -• ,.

k~l [nil n+l T
iA? =rAI +*(Vu )]

We denote by H (1) the usual Sobolev spaces and by 11-[1 the

norm in Hs() . The following lemma is immediate from the invertibility

of the Stokes operator [5] and elementary perturbation theory [4].

LEMMA 2.1: Let s be an integer 1 Then there are positive constants

1 and c such that the fotoLtng holds: If II- C and-

11unIs I 2  then equation (2.S) has a unique soution un
, qn:'1

This solution obeyo an estimate of the fome.

1+1 n"l -" s lu lls + "I"
Ilu lls+2 + lqn ls+l <5 CI n - 2 "'s+lfl s+l

n 2 u 11 n l lunlls ]..::...
+ I1f  IlnIls +2l s _ 2 •.

The following lemma concerns the solvability of equation (2.6).

LEMMA 2.2: There is some 3 > 0 such that, forI <- 3 . -
n ni n+,l 3

div = 0 , u u 0 , the wniqua solution of (2.6) satisfies

an estimate of the form O

In+l -1
,P IIs 1  2 -~ IIs 1 •....:

Sketch of the proof: Equation (2.6) is easily solved by the method of

characteristics, and existence and uniqueness follow immediately. Moreover,

the operator (u .V) is skew-adjoint in L2 C(S) , whence

Ijpn+ llo 5 liq "b .'"

-5-
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Estimates for derivatives are obtained by differentiating the

equation. (Such estimates are formal and the calculations involve derivatives

not a priori known to exist. However, it is easy to see that p is

smooth if u and q are, and we can thus construct approximating sequences

satisfying uniform estimates.)

Since equation (2.7) can be regarded as a perturbation of (2.6),

we have n..,
LEMMA 2.3: 2here is a constt c such that, for Iy 1 Is2 CS the

unique solution of (2.?) satisfies an estimate of the fozm"

L iqan+l ~ 3I 1s,2

By combining the estimates contained in leImas 2.1- 2.3, it can

be shown that all iterates remain bounded if f is small.

LEMMHA 2.4: .If 1LI s i sufficient small, te ll.l

Idq a d Il have (small) bounds independent of n.

Next we show that the iteration generates a convergent sequence in

a weaker norm.

LEMMA 2.5: Let IIfl+ be sufficiently small. Then there is a constant

Y < such that

n+l n nl qn u -iqn qn-I vI.~ -1 IIs5, IIq - IIs 5r [IlunU . Is

Sketch of the proof: From (2.6), we obtain

n ( n-i n-I n n-i qn q n-I

This is equivalent to

-6-



cn-n-) P c 'l.,)cPpn-n' ) • cpu PR-1)  6

n n-I
uq q

From this and the bounds already established by lema 2.4, we

conclude that, for some constant C4  we have

11pn pn-II s SC4[lqnqnl - nls n-+

Similarly, we find from (2.7)

I-rn .-n-I IIIS_ Csl1lu n _ u n'-111 ; :=" .-.

J, - ..+1

Next, we subtract (2.S)n and C2.S)n- . By using lemma 2.4 and

the already established estimates for pn. pn-1 and - fh-1 we easily

obtain the lemma. We omit the details of the calculation.

Thus we have proved

THEOREM 2.6: Let s be an integer e I and let.fls be sufficiently

ss+2
small. Then there exists a solution u E Hi+ ,p Hs+ a TE(Hs* for

equations (1.1), (2.1), obtainable by the iteration pr'ocedure (2.4) - (2.7).

Remark:

Let us replace f by ef If s is chosen large enough, then we

can, by following similar procedures as above, obtain estimates for

difference quotients of the solution with respect to c. This shows that

the solution depends smoothly on c and therefore establishes the

asymptotic validity of Rivlin-Ericksen expansions. In problems with

inflow boundaries, we should expect the situation to be quite different.

Rivlin-Ericksen expansions are uniquely determined by prescribing velocities

alone on the boundary. However, these boundary conditions are clearly not

enough to uniquely define flows of a Maxwell fluid.

-7-
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3. THE CASE OF SEVERAL RELAXATION MODES

We apply the divergence operator to (1.2), and obtain as before

(3.1) (u.V)div Tk - Vu div Tk +k div Tk . *

We write this as

(3.2) div Tk= ((u.V).Xk) I +k : a2 u+Vu div =k.

By inserting this into (1.1), we find

(3.3) P(u-.V)u - noU + + ((u-V) Xk)

k

[nkkU=Tk a u + Vu div T

The cases n0  0 and no  0 are treated in different ways. We begin

with n0 0 0 • In this case, we set

L u] =n o +I nkXk((U-V)+ •k)

LEMMA 3.1: The operator L[] is a bije"tion L (n) L R3c0)
Proof: Since (u-V) is skew-adjoint, we have (((u-V) + x) 0 for -

" x EL 2 (fl). Hence (L[u]x,x) -z nO(x,x) , and the invertibility follows

from the Lax-Milgram theorem.

By differentiating the equation L[yjx-y it is not difficultL*u x y , ....

to show that, if u and its derivatives are small, then L[u] also maps

higher Sobolev spaces bijectively into themselves.

We set q L[ujl p and apply the operator L[uj to (3.3).

We thus obtain

z-8-
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k) - I- i- . ,x-7

PL[u- (u-V)u - Au- Vq* L[u] " { ((uV) x "--,k.-

2k

(3.4) a2 u  Vu div T + -f"

-1 -1 T -1SL[u]) (Vu) V[((UkV)(+ A) q]

We use the following iteration scheme

(3.5) o_ _0 , q0 o ,0

(3.6) Aun+l _ Vq = TLun 0l(un.V)un

- L(un] - 1 [ ((un'V)+ Ak) -l[=k: a2un+Vun div_1Tn] -.._.
k-

n 1 n-i ,n- T

-L[un] l- " L[un ] - [nk~k(( n ' V) + k) I (Vun)T i

v[(n.V) Ak) -Y n ..

n+1 * ff n*1...div u~ = 0 ,u n  I =O0,jj q = 0.•"''

(3.7) n+l n , X +l Tn+ln+l n+ln. VTk - =k =k

Tn ln- knkVnil un+lT

I~ nk~k! 4. Vu) .=

all 0

We can now proceed in precisely the same manner as in section 2 to''.-''

establish convergence of the iteration scheme. "-.-.-

If 1)0 = 0 , the operator L[_i] as defined above is not coercive .-. ."

and lemma 3.1 does not hold. In this case, we adopt a different procedure.

Let W be any positive real number. e apply the operator (u.V) e io to _

-9-
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(3.3) and obtain

(3.8) p((uv).)+ (U'V)y k(-)+ (( )A -1

k

+ Tf 1

kk k

Lly] is a coercive operator in L2 (f) and L[juf exists. We

can now apply the operator L[uf1  to (3.8), define q= L[y]1 ((u'V) X)p

and set up an iteration scheme in an analogous fashion as before.

-10-
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